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The standard phase III trial 
These trials typically randomize approximately 400 patients

between two therapies.1-3 This relatively large number is
required to detect relatively small improvements with a false
positive rate less than 5% (p<0.05) and a false negative rate
less than 20% (80% power). For example, the trials in refer-
ences 1-3 targeted increases in median event-free survival
(EFS) or survival of 6-12 months, in 2-year EFS or survival of
from 10% to 20% and in complete remission (CR) rate from
50% to 65%. Consider the relevance of a 6-month improve-
ment in survival to an otherwise healthy 65-year old man
with untreated acute myeloid leukemia (AML). Such a patient
might expect to live another 15 years if he did not have AML
but only another one half-year if he is randomized to a stan-
dard treatment arm. In such a case, he only retains 0.5/15 (3%)
of his normally remaining life expectancy. If he is randomized
to the investigational arm and it is successful, he gains another
half-year and now retains 1/15 (7%) of his life expectancy.

While statistically significant, I doubt many patients would

consider this result medically significant. Hence, the targeted
improvement does not reflect clinical reality. The choice of a
false positive rate of 0.05 but a false negative rate of 0.20
implies a preference for more protection against a false posi-
tive than a false negative result. This is quite sensible when
satisfactory treatment exists for the disease in question, and
hence, replacement of this standard with a falsely positive
new therapy is particularly undesirable. However, because
there is no satisfactory treatment for most patients with AML,
the medical risk of a false positive is much less. Indeed, the
near universal choice of p=0.05 and power=80%, regardless of
the disease in question, ignores the reality that diseases vary
considerably in curability.

Consequently, phase III AML trials should perhaps seek
more clinically meaningful improvements and permit higher p
values. Although this formulation would result in loss of
power to detect relatively small advances, I question whether
leukemia therapeutics advances in such small increments. In
particular, it would appear that quantum therapeutic advances
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This paper contends that commonly used clinical trial designs do not reflect clinical reality as viewed by patients or physi-
cians. Specifically, randomized phase III designs focus on improvements that are more significant statistically than med-
ically and put an emphasis on avoiding a false positive result that is more appropriate for diseases that are curable, in con-
trast to acute leukemias. The resultant large sample sizes needed for each treatment restrict the trial to one or two new
treatments, although historical reality suggests the difficulty in knowing, without clinical data, whether these are the best
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treatment of subsequent patients, contravening patients’ assumptions. Standard phase II trials focus on a single outcome,
ignoring the complexity of medical practice, and ignore prognostic heterogeneity. Finally, although patients are more
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different treatments does not begin until phase II trials have been completed. This paper proposes alternatives based on
the Bayesian statistical approach. The thesis that I will develop here is that commonly used clinical trial designs are unre-
alistic in the sense that they do not correspond well to patients’ views of medical practice and greatly over-simplify such
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are not infrequent, as with all-trans retinoic acid (ATRA)
and arsenic trioxide (ATO) for APL, 2-
chlorodeoxyadenosine for hairy cell leukemia, high-dose
ara-C and likely gemtuzumab ozogamycin for CBF
AML, and imatinib for chronic myeloid leukemia
(CML). Even if there were value in retaining sufficient
power to detect small advances, the added value may
not justify the necessary sample sizes, which prevent
expeditious completion of trials and simultaneous inves-
tigation of a large number of new therapies.

P value-based versus Bayesian approaches
Patients naturally prefer adaptive designs, those that

permit treatment decisions for subsequent patients in a
trial to be based on results in previous patients.
However, p value-based designs tend to discourage fre-
quent examination of incoming data. This reflects the
inextricable link between p value and trial design, such
that the same data can produce different p values
depending on the particular design used (Table 1).4-7 For
example, it is well-known that the probability of finding
an association at p<0.05 increases purely by chance as
the number of tests of significance that are performed
increases.8,9

Accordingly, interim analyses of clinical trials are gen-
erally performed at p values much less than 0.05 in order
to preserve an approximately 0.05 level of significance at
the final analysis. For example, the design proposed by
Fleming et al. stops a trial, declaring one arm superior,
only with p values of 0.005, 0.006, 0.007, and 0.009 at
the 1st, 2nd, 3rd, and 4th of 4 interim analyses, respectively.
This of course makes it difficult to stop 1:1 randomiza-
tion to an arm, even when the probability that that arm
is inferior is greater than 90%, leading most patients to
prefer randomization to the better arm. 

The dependence of p value on trial design is such that,
in a case in which the final planned analysis yields a p
value of 0.051, but in which subsequently obtained data

strengthen the evidence in favor of a difference, these
data cannot be used since they were not obtained as part
of the planned experiment.

The Bayesian approach provides flexibility, and in par-
ticular, encourages interim analyses. The approach
begins with parameters, such as the probability of CR or,
when comparing two treatments, the probability that
the relative risk of survival is greater than 1.0. These
parameters (denoted here by θ) are random quantities,
with probability distributions describing one’s uncer-
tainty about them. One begins with a prior distribution,
p(θ), that characterizes the uncertainty about θ before
observing any data. The second Bayesian quantity is the
likelihood, L(data | θ), which describes the probability of
observing any specified data given any value of θ; exam-
ples of likelihoods are the binomial distribution for bina-
ry events and the normal (bell-shaped) distribution for
continuous variables. Bayes’s theorem multiplies the
prior by the likelihood of observing the data given the
parameter to arrive at a posterior distribution of θ, which
describes uncertainty about θ after observing the data
(Figure 1). In contrast to p value-based methods,
Bayesian inference is not affected by the experimental
design since data only enter inferences through the like-
lihood function. Consequently, when making decisions
or inferences based on accruing data, Bayes’s theorem
may be repeatedly applied, with the posterior at each
stage becoming the prior for the next stage. The proba-

Table 1. Definitions.

p value: the probability of observing the data or more extreme data under
the null hypothesis; the latter states that there is truly no difference
between two treatments. For example, assume the null hypothesis is that,
among 10 people, 5 would prefer red and 5 blue. In fact, 8 preferred red
and 2 blue. The p value is calculated as the probability that, under the null
hypothesis, 8/10 would prefer red + the probability that 9/10 would prefer
red + the probability that all 10 would prefer red.

Bayes’s theorem states:
[P (A|B)] [P(B)]

P(B|A) =
[P (A | B)] [P(B)] + [P (A | not B)] [P (not B)]

where P is probability, B is a hypothesis, and A are observed data. P(B) is
known as the prior probability of the hypothesis, while P(B | A) is the pos-
terior probability of the hypothesis. Thus, the p value is based on the prob-
ability of data given a hypothesis while Bayesians compute the posterior
probability of a hypothesis given data. Physicians often mistakenly believe
that a p value is a Bayesian posterior probability.

Figure 1. Bayesian probability distributions using a trial of a new
therapy in relapsed acute myeloid leukemia as an example. The
values on the horizontal axis are different probabilities of com-
plete remission. The values on the vertical axis represent the
weight assigned to each CR probability. Prior to treatment,
although the average CR rate is thought to be 20%, some cre-
dence is assigned to each probability of CR (prior probability dis-
tribution, dotted line). After observing 5/10 CRS (first posterior
probability distribution, dashed line), the average CR rate is close
to 50% and no credence is given to CR rates less than 10% or
greater than 90%, reflecting the impact of the observed data on
the prior. Thus, the posteriors become successively more informa-
tive as the data accumulate, and shift to reflect the overall aver-
age behavior of the data. After observing 7 CRs in the next 30
patients (total 12 CRs in 40 patients), the average CR rate is
approximately 30% and no credence is given to a CR rate greater
than 60% (2nd posterior probability distribution, solid line).
Computing the proportion of the area under the curve that is to
the right of a CR rate of 0.4 gives the current probability that the
CR rate is greater than 0.4. This probability can be used to make
treatment decisions.
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bility distributions in this sequence become increasing-
ly informative about θ as the data accumulate. This
process, known as Bayesian learning (Figure 1), is espe-
cially useful in sequential data monitoring during a clin-
ical trial. The current posterior probability distribution
may be used to modify doses, unbalance a randomiza-
tion in favor of a treatment with relatively superior per-
formance, or terminate a trial early due to either superi-
ority of a treatment or futility. The Bayesian approach’s
flexibility can be appreciated by contrasting its ability to
incorporate data obtained subsequent to trial comple-
tion with the p value approach’s inability to do this, as
noted above.

A significant issue with the Bayesian approach is set-
ting prior probabilities. In Figure 1, we made the prior
non-informative reflecting a lack of any information
about response to the new drug. However, it might be
contended that the prior should be more informative,
incorporating knowledge of previous trials with other
drugs in relapsed AML. The choice of prior obviously
influences computation of the posterior – the more
informative the prior, the more data needed to influence
the posterior. The designs described below generally
use non-informative priors. A more detailed presenta-
tion would describe how selection of different priors
influences the posterior.

Adaptive randomization
Bayesian designs for adaptive randomization repeat-

edly use interim data to compute the probability that
one arm of a randomized trial is better than the other(s),
unbalancing the randomization to favor the likely better
treatment.10,11 If this probability crosses a pre-specified
boundary, the inferior arm is shut down before the
maximal sample size is reached. However, it may re-
open if further analyses indicate that results with the
open arm(s) are deteriorating such that the probability
that this arm(s) is superior has decreased. 

A trial adaptively randomizing patients over age 50
with untreated AML among idarubicin + ara-C (IA, the
standard), troxacitabine + ara-C (TA), and troxacitabine
+ idarubicin (TI) illustrates the process.12 The first 15
patients were randomized fairly among the three arms.
As each patient after the 15th entered the trial, we com-
puted the posterior probability that the CR rate with IA
was greater than or equal to 10% better than that with
TA or TI. If this probability was less than 0.15, accrual
to IA was suspended. If in contrast the posterior proba-
bility was greater than 0.85 that the CR rate with TA or
TI was greater than or equal to 10% worse with IA,
accrual to either TA or TI was suspended. Depending on
results in arms that remained open, a closed arm could
re-open. A maximum of 75 patients were to be random-
ized. The TI arm closed and remained closed after the
first 5 patients failed to respond, while the TA arm
closed and remained closed after the CR rate was 3/11,
at which time the CR rate in the IA arm was 10/18. If
the 34 patients who had been entered on the trial when
both TA and TI arms were closed had been randomized
fairly, 11 patients would have received each of TA, TI,
and IA. With adaptive randomization, only 16, rather
than 22 patients, received the inferior TA or TI arms,

probably corresponding with how patients visualize
clinical practice. 

The possibility certainly exists that stopping arms so
early might lead to a false negative conclusion.
Beginning adaptive randomization only once 15 to 20
patients have been randomized equally among the var-
ious treatment arms reduces the problem. At any rate, it
is critical to examine how the design performs under
various clinical scenarios, that is, what are its operating
characteristics (OC). OC include the probabilities that
the design will correctly select a truly superior treatment
or incorrectly select a truly inferior treatment, as well as
the median number of patients treated on each arm. If
clinicians feel the OC are unsatisfactory, the parameters
above, such as the criterion probabilities of 0.15 or 0.85,
or the number of patients to be fairly randomized are
changed until desirable OC are obtained. Table 2 illus-
trates 1,000 computer simulations for two scenarios in
the IA versus TA versus TI trial. In the first, the true CR
rates with TA, IA, and TI are 50%, 40%, and 30%,
respectively; hence, the correct conclusion is that TA is
superior. As parameterized above, the probability was
80% that the design would reach the correct conclusion,
corresponding to a power of 80%. In contrast, if the true
CR rates were 30%, 40%, and 30% with TA, IA, and TI,
respectively, the probability that the design would cor-
rectly select IA as superior was only 10%. Hence, in this
case, the design provided much more protection against
a false negative than a false positive. The false positive
rate could have been decreased by eliminating the
requirement that, with high probability, TA or TI be at
least 10% worse than IA before either of these arms
would close. However, this would have also increased
the false negative rate contrary to the desire of the clin-
ical investigators to maintain a low false negative rate. 

As outlined above, adaptive randomization fails to
account for the possible imbalance in prognostic covari-
ates between patients randomized on each arm. This
issue has recently been addressed, together with how
adaptive randomization may be used with censored
data as might arise when survival is the endpoint.13 In
any event, implementation of adaptive randomization
requires that patients only infrequently present for ran-
domization before there has been sufficient opportuni-
ty to observe the outcome in previous patients.

Accounting for prognostic heterogeneity in single
arm trials

New drugs are typically tested in single-arm phase II
trials before investigation in phase III. The most com-
monly used design for single arm phase II trials is the
Simon 2-stage (S2S) design.14-15 Rates of no interest
(known as p0), typically corresponding to the historical

Clinical trials design
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Correct Probability
conclusion correct conclusion

TA superior 80%
IA superior 10% 

True CR rates
TA IA TI
50% 40% 30%
30% 40% 30%

Table 2. Operating characteristics for IA vs. TA vs. TI trial.
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rate, and of interest (p1) typically 0.15 to 0.20 higher
than p0 are specified, together with maximum false pos-
itive and false negative rates (typically 0.10). These
parameters determine the number of patients treated in
the first stage and the minimum number of responses
needed to proceed to a second stage of specified number.
After the latter is completed, a drug is accepted if the
number of responses is greater than the specified mini-
mum. 

The S2S unrealistically assumes that treated patients
have homogeneous prognoses. Certainly, in AML this is
unlikely to be the case.16 Hence reliance on the S2S risks
declaring drugs inactive when they might have been
found active had a better prognostic group been treated.
Conducting separate phase II trials in distinct prognostic
groups is time consuming and does not allow informa-
tion gained in one prognostic group to affect the trial in
a second prognostic group.

A method that accounts for treatment-prognostic sub-
group interactions has been proposed, specifically using
data from the trial to estimate the degree to which the
results in the different subgroups can be combined.17

There are two levels of prior probability distributions
(hierarchical Bayes). The first is the usual probability of
response to a drug in each of, for example, two prognos-
tic groups. The second quantifies prior belief that the
response in one prognostic group can inform the proba-
bility of response in the other. As usual, these priors are
updated as the trial proceeds.

Consider a hypothetical trial of a new drug in relapsed
AML. Actual historical data indicated a response rate of
21% in 169 patients. This rate was 11% (118 patients) if
initial CR duration was less than one year but 43% (51
patients) if initial CR duration was greater than one year.
The goal was to increase response rate to 31% (absolute
increase of 0.2) in the worse prognostic group and to
58% (absolute increase of 15%) in the better prognostic
group. Since the historical data suggest that 69% of
patients will be in the worse group, the overall targeted
improvement is [0.20×0.69}+[0.15×0.31]=0.18. Thus, an
S2S design would set 21% as p0 and 0.21+0.18=0.39 as
p1. Setting the nominal false positive and false negative
rates at 0.10, the S2S would treat 22 patients in a first
stage, and the trial would stop if less than five responses
occurred. If greater than four responses occurred, an
additional 21 patients would be enrolled and the drug
declared a success if responses were seen in more than
12/43 patients. Thus, to make the proposed design
(hereafter, STI because it examines subgroup-treatment
interactions) comparable to the STS, we specify that STI
will also take its first look after 22 patients have been
evaluated and will also set its false negative rate at 0.10.

Table 3 compares the operating characteristics of the
STI and S2S designs. In Table 3A, the new drug achieves
its goal in the better but not the worse group. Because
the S2S does not consider interactions between prognos-
tic subgroups and treatment, it has the same probability
(0.75) of rejecting the drug in both groups. In contrast,
the STI is less likely to reject the drug in the better group
and more likely to reject it in the worse group.
Furthermore, 52% of the patients treated with STI will
be in the better group versus only 29% with S2S. Table

3B illustrates that, in the case in which the desired
improvement occurs in the worse but not the better
group, STI is more likely to accept and reject the drug in
the appropriate subgroups. Although conducting sepa-
rate Simon 2-stage designed trials in better and worse
subgroups corrects this problem, S2S’s inability to allow
results in one subgroup to affect the conduct of the trial
in the other subgroup continues to result in a smaller
proportion of patients belonging to the group where
treatment seems more effective relative to historical
data.

Monitoring multiple outcomes 
The great majority of clinical trials specify one primary

outcome, such as toxicity, response rate, or survival.
Stopping rules are based only on the primary outcome.
This formulation appears unrealistic, ignoring the com-
plexities of medical practice and clinical research. For
example, because phase I trials are often quite small and,
unrealistically, fail to account for covariates other than
dose associated with toxicity, knowledge of toxicity is
often incomplete after phase I.18-20 It follows that it is
desirable in phase II to formally measure both response
and toxicity and allow stopping based on either out-
come. Consider also a trial of a new therapy, postulated
to be less toxic than standard 3+7, in older patients with
untreated AML. While the reduced toxicity might
improve survival relative to 3+7, it might also reduce CR
rate, with long-term survival most likely in patients
achieving CR.21 However, some decrease in CR rate
would be accepted provided survival increased. Thus,
the trial would formally monitor both survival and CR,
stopping if the decrement in CR rate appeared too great
or the increase in survival insufficient. The proportion of
eligible patients who actually enrol on a trial is often rel-
atively low due to selection bias. The consequences of
such bias might be reduced were trials to stop if it
appeared likely that they were only relevant for a small
subset of the eligible population. Designs that monitor
multiple outcomes are readily available.22,23

Testing more new therapies and allowing earlier
comparison of these 

Patients are more interested in whether one therapy is
better than another than whether either therapy is active.

Tables 3. Comparative operating characteristics of STI and Simon 2-stage
(S2S) designs.

Probability Mean
True (Reject) #Pts

Subgroup CR Rate S-TI S2S S-TI S2S
Better 0.58 0.10 0.75 21 10
Worse 0.11 0.90 0.75 19 25

Probability Mean
True (Reject) #Pts

Subgroup CR Rate S-TI S2S S-TI S2S
Better 0.43 0.50 0.26 13 11
Worse 0.31 0.10 0.26 27 30
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Because comparison is best done through randomiza-
tion, it has been proposed that randomization begin ear-
lier than is now the case. In particular, selection designs
have been proposed in which a relatively small number
of patients are randomized among several new thera-
pies.22,24 The rationale is that, although many new ther-
apies are available that may be tested in different sched-
ules and combinations, pre-clinical rationale is an
imperfect guide to selecting which new drug to com-
pare with a standard. Thus, a compelling pre-clinical
rationale did not exist for arsenic trioxide in APL, flu-
darabine in CLL, and cladribine in hairy cell leukemia,
while many drugs that failed clinically were accompa-
nied by seemingly unassailable rationales. A Bayesian
selection design randomizes 45 to 80 patients among
three to four therapies. Each therapy begins with the
same prior probability distribution. As patients are
treated, the priors are updated with these posteriors
used to shut down accrual to an arm if, for example, the
probability that its true response rate is greater than
20% worse than a competing arm is high. At the end of
the trial, the arm with the highest response rate among
those not shut down is selected for further study, per-
haps in comparison to standard therapy.

Such selection designs are often criticized as under-
powered phase III trials. Examination of selection designs’
operating characteristics indicate that, in a scenario

where three drugs have the same true response rate and
the fourth provides an absolute 20% improvement, the
probability of correctly selecting the fourth drug (that is
the probability that it will not stop early plus the prob-
ability that it will have the highest response rate at the
end of the trial) is only about 60%. This of course con-
trasts with the aforementioned 80% power typical of
randomized trials, involving, for example, a new drug
versus a standard. However, the 80% figure is purely
nominal, ignoring the process used to select the new
drug. Assume that four new therapies were available for
comparison with a standard, and that because pre-clini-
cal rationale cannot substitute for clinical data in the
selection process, each was equally likely to be useful
clinically. It follows that the probability of correctly
selecting the best drug was 25%. This 25% is ignored in
the computation of 80% power; if it were not, the
power of the trial would be 25%×80%=20%. 

Thus, the selection design’s 60% probability of cor-
rect selection should be viewed, not in relation to 80%
power, but in relation to the 25% probability of correct
selection that it would obtain in the absence of the
selection design. Recognizing these issues, the Medical
Research Council-sponsored trials in AML in the United
Kingdom are employing selection designs rather than
more conventional phase III designs.

Clinical trials design
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